Physical Variables Influencing Near-shore Habitat Use of Juvenile Chinook Salmon in the Sacramento River

Michael Hellmair
Physical Variables Influencing Near-shore Habitat Use of Juvenile Chinook Salmon in the Sacramento River

U.S. Army Corps of Engineers
• Evaluate habitat use of focal fish species at various post-2006 levee repair sites

• Determine if on-site mitigation features are increasing habitat value to approximate “natural banks”

• Identify which microhabitat features of maximize fish use by focal species
Sampling occurred at 16 sites, encompassing 3 site categories:

- Naturalized sites (n=4)
- Unmitigated repair sites (n=3)
- Mitigated repair sites (n=9)
Methods: Sampling

Sampling by boat electrofishing
Measure associated habitat characteristics at each incursion point
Methods: Sampling

Establish point-specific capture record & habitat parameters
Methods: Variables

Habitat variables:
• Depth / Slope
• Velocity / Gradient
• Substrate
• Temperature difference
• Shade
• Emergent woody material
• Emergent vegetation

Others:
• Event
• Rivermile
• Site/design category
Methods: Habitat Occupancy

• Single-variable logistic regression model to determine if model fit is significantly improved by any one predictor:

\[P_i = \frac{e^{g(x)}}{1 + e^{g(x)}} \]

• Remove non-significant \((p > 0.25)\) predictors from scope for multi-variable model fits

• Use backward model selection to determine the most likely multivariate model
Methods: Habitat Occupancy

- Test fit of the selected model using Hosmer-Lemeshow goodness-of-fit statistic (a high p-value indicates a good fit)
- Evaluate classification accuracy with unbiased jackknife estimator
- Determine Cohen’s kappa statistic as a chance-corrected measure of prediction
Results: Habitat Value of Mitigated Repair Sites

- Fish densities at mitigated repair sites (all designs) were not significantly different from naturalized sites.
- Fish densities at most mitigated repair sites were significantly higher than at non-mitigated sites.
Results: Fry Habitat Occupancy

Variables excluded due to non-significance in single model evaluation:
- Shade
- Substrate (at 15 feet)

Multivariate model fitting: Final model
- Vegetation density
- Depths close to shore (5 & 10 feet)
- Velocity close to shore (5 & 10 feet)
- Current gradient
- Substrate close to shore (5 & 10 feet)
- Rivermile
Results: Fry Habitat Occupancy

Occupancy probability key factors

Higher probability at points with:
• Submerged vegetation (sparse, OR = 2.07)

Lower probability at points with:
• Deep water close to shore (OR = 0.63)
• Faster current close to shore (OR = 0.46)

Hosmer-Lemeshow GOF: $p = 0.34$
Jackknife: 88% classified correctly
Cohen’s kappa: 0.29 ($Z = 6.54$, $p < 0.01$)
Results: Juvenile Habitat Occupancy

Variables excluded due to non-significance in single model evaluation:
- Shade
- Depth (at 15 feet)

Multivariate model fitting: Final model
- Bank slope
- Density of woody material
- Depths close to shore
- Current gradient
- Temperature difference
- Substrate
- Rivermile
Results: Juvenile Habitat Occupancy

Occupancy probability key factors

Higher probability at points with:
- woody material (sparse OR = 1.78, medium OR = 2.71)
- warmer ambient temperatures (OR = 1.64)

Lower probability at points with:
- Deep water close to shore (> 5ft, OR = 0.06)
- Cooler ambient temperatures (OR = 0.45)

Hosmer-Lemeshow GOF: $p = 0.46$
Jackknife: 81% classified correctly
Cohen’s kappa: 0.27 ($Z = 5.96, p < 0.01$)
Results: Smallmouth Bass

Variables excluded due to non-significance in single model evaluation:
• Vegetation density
• Depth at 10 and 15 feet
• Velocity gradient
• Substrate

Multivariate model fitting:
• Bank slope
• Density of woody material
• Nearshore current velocity
• Rivermile

Higher chance of occupancy at:
• Steep slopes (OR 2.78)
• Density of woody material (OR, Low: 1.93, Medium: 3.06 , High: 11.11)
• Velocity close to shore (Medium, OR 3.31)
• Abundance decreases with distance upstream (OR 0.98)
Resident Rearing vs. Migration

- Collect drift samples at select sites
- Gastric lavage of juvenile Chinook
- Dissection of mortalities

Key points:
- Majority of individuals had identifiable gastric contents (>95%)
- Often large number of diet items (~200) suggestive of active feeding
- Seasonally high abundance of larval native fishes in drift and diet
 - Larval fishes can constitute > 60% of drift items
- Typically, copepods and cladocerans constitute > 90% of prey items
Questions?