

AN INTEGRATIVE APPROACH TO MODELING EFFECTS OF REACTIVATION OF RIVER MIGRATION ON AQUATIC AND FLOODPLAIN HABITATS

GLEN LEVERICH ¹ NOAH HUME ¹ RAFAEL REAL DE ASUA ¹ ERIC LARSEN ² RAY MCDOWELL ³ ADAM HENDERSON ³ STACY CEPELLO ³

2014 Bay-Delta Conference Modeling & Physical Science 30 Oct 2014

CENTRAL VALLEY FLOOD MANAGEMENT 3 PLANNING PROGRAM

Conservation Framework of the CVFPP

- Increase flood protection levels
- Improve agricultural and ecological values
- Enhance natural dynamic hydrogeomorphic processes
- Add to recovery of native species

Strategy → Expand floodway corridors

CVFPP Areas (CDWR 2012)

Study Goals

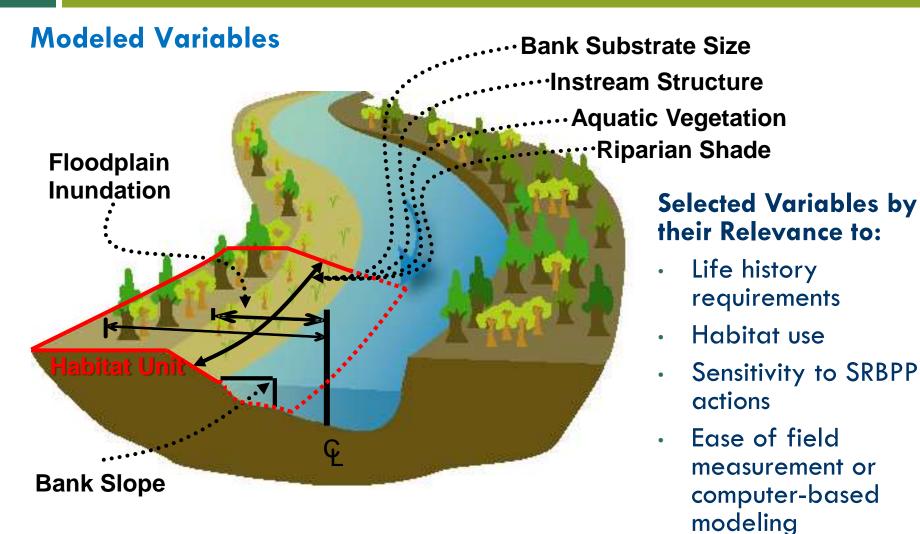
- Assess potential effects of reactivation of meander migration on fish habitat
- Hypothetical revetment removal and levee setbacks
- Develop repeatable, cost-effective approach

Approach → River Migration (Larsen) and Aquatic Habitat models

Modeling Approach

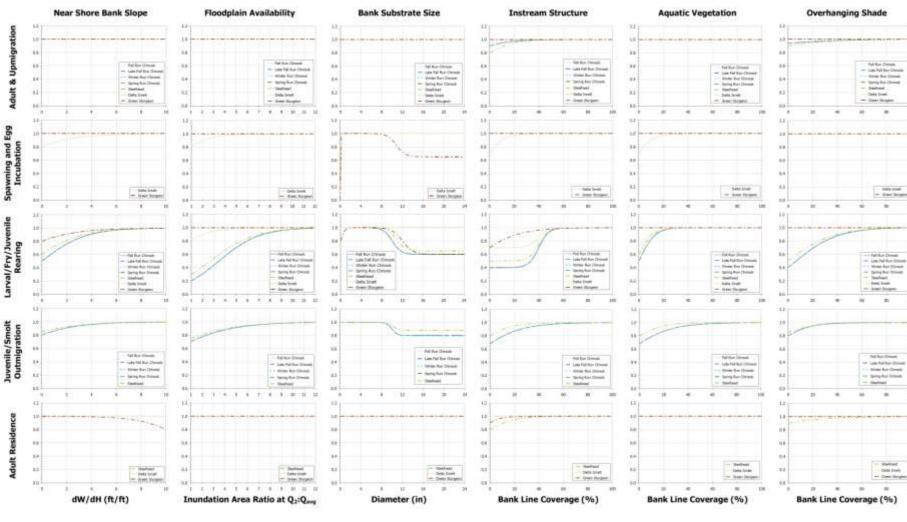
- Meander Migration model Eric Larsen (UCD)
- SRBPP SAM to assess effects of conceptual project actions on nearshore habitat of listed fish populations
- Enhance SAM to incorporate 1-D meandermigration
 - Pilot sites along middle Sacramento River

<u>Standard</u> <u>Assessment</u> <u>Methodology</u>



SAM is a habitat assessment protocol developed for the SRBPP

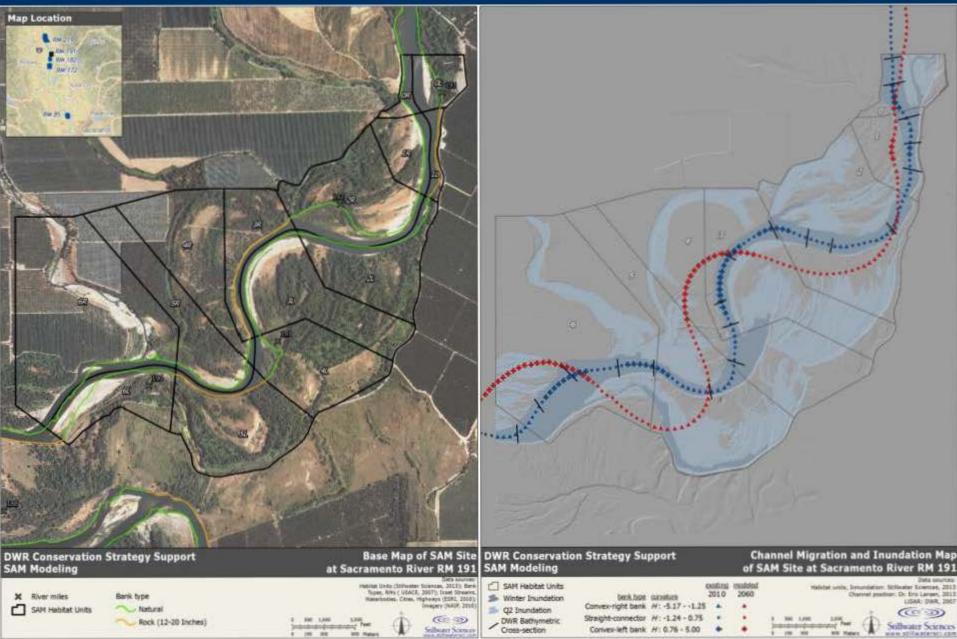
Considers habitat requirements for seven T&E fish populations:


- Chinook salmon (4 seasonal runs)
- Central Valley steelhead (Threatened)
- Delta smelt (Threatened)
- Green sturgeon (Threatened)

<u>Standard</u> <u>Assessment</u> <u>Methodology</u>

Standard Assessment Methodology

Modeled Variables



SAM Modeling Approach

Parameter	Data Source			
Wetted Area	Seasonal water surface elevations			
Bankline Length	Topo-bathymetric surface			
Bank Slope	Topo-Datitymetric surface			
Inundation Availability	Seasonal and Q2 water surface			
	elevations Topo-bathymetric surface			
Bank Substrate				
Instream Structure	Revetment database Aerial photos			
Aquatic Vegetation	Reveliment database Aerial photos			
Overhead Shade				

Challenge:

How to convert 1-D channel centerline points for existing and future conditions into usable format for SAM input variables...?

Eric Larsen's Meander Migration Modeling | 2010 Channel Centerline (in blue)

Phelan Island - RM 191

Image USDA Farm Service Agency

Imagery Date: 4/24/2010

39-41-03,42" N 121-57'26,86" W elev 108 ft

Eye alt 20173 ft

Google earth-

Eric Larsen's Meander Migration Modeling | 2010 Channel Centerline (in blue)

Remove Rock Revetment

Phelan Island - RM 191

Remove Rock Revetment

Image USDA Farm Service Agency

39"41"03,42" N 121"57'26,86" W elev 108 ft

Eye alt 20173 ft

Google earth-

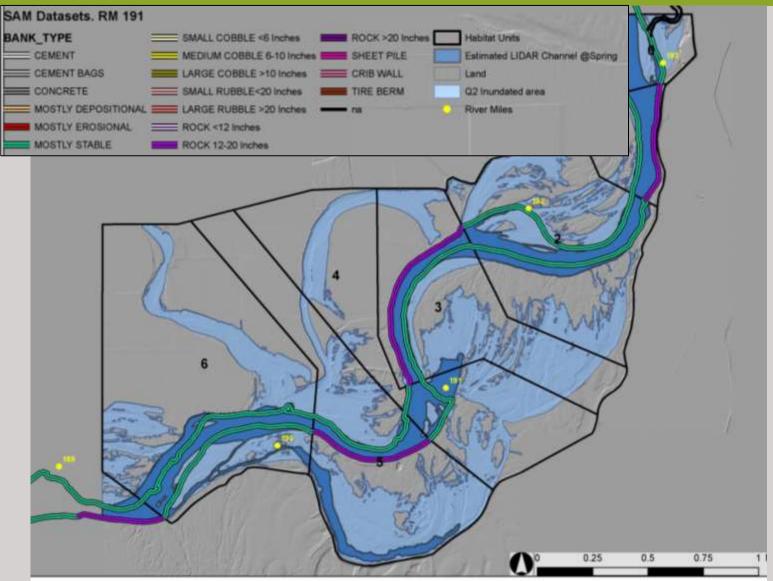
Imagery Date: 4/24/2010

Habitat Units

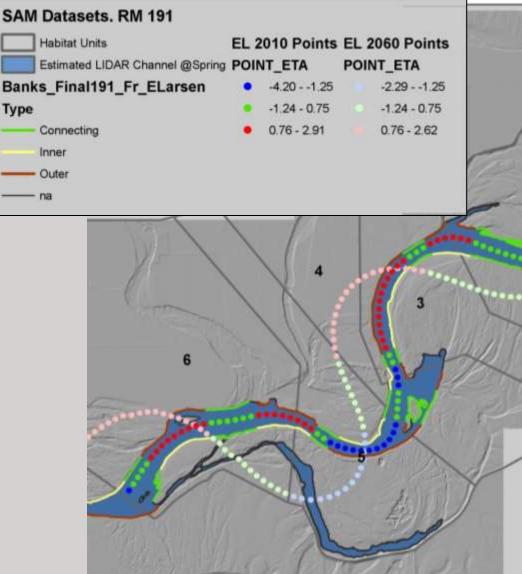
Create Habitat Units for SAM Model | Based on Dominant Bank Type (Revetment DB)

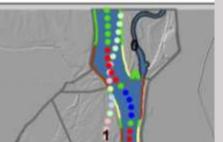
Phelan Island - RM 191

Image USDA Farm Service Agency


39*41'03,42" N 121*57'26,86" W elev 108 ft

Eye alt 20173 ft


Google earth


Imagery Date: 4/24/2010

Q2 Inundation Area | Based on River Gage and Topographic DEM

Eric Larsen's Meander Migration Modeling | Channel Curvature

Convex–right bank: Where the river bends to the right (as viewed in the downstream direction)

Straight-connector: Where the river lacks any curvature and lies between river bends Convex–left bank: Where the river bends to the left (as viewed in the downstream direction)

• Phelan Island - RM 191

Habitat Unit 5L

Image USDA Farm Service Agency

39"40'32.78" N 121"57'38 68" W elev 126 ft

Imagery Date: 4/24/2010

0000000

SAM Model Inputs

Habitat Inputs | Example for Habitat Unit No. 5 Left (5L) under EXISTING conditions

		Seasonal Values				
Habitat Parameter	Water Year	Fall	Winter	Spring	Summer	
Wetted Area	2010	857,132	857,132	857,132	857,132	
(square feet)	2060	857,132	857,132	857,132	857,132	
Shoreline Length	2010	3,044	3,044	3,044	3,044	
(feet)	2060	3,044	3,044	3,044	3,044	
Bank Slope	2010	3.5	3.5	3.5	3.5	
(dH:dV)	2060	3.5	3.5	3.5	3.5	
Floodplain	2010	1.0	8.0	8.0	1.0	
Inundation Ratio						
(AQ2:AQavg)	2060	1.0	8.0	8.0	1.0	
Bank Substrate Size	2010	16	16	16	16	
(inches)	2060	16	16	16	16	
Instream Structure	2010	0	0	0	0	
(% shoreline)	2060	0	0	0	0	
Aquatic Vegetation	2010	13	63	63	13	
(% shoreline)	2060	13	63	63	13	
Overhead Shade	2010	3	1	2	3	
(% shoreline)	2060	3	1	2	3	

Assumes static state with rock revetment being left in place indefinitely

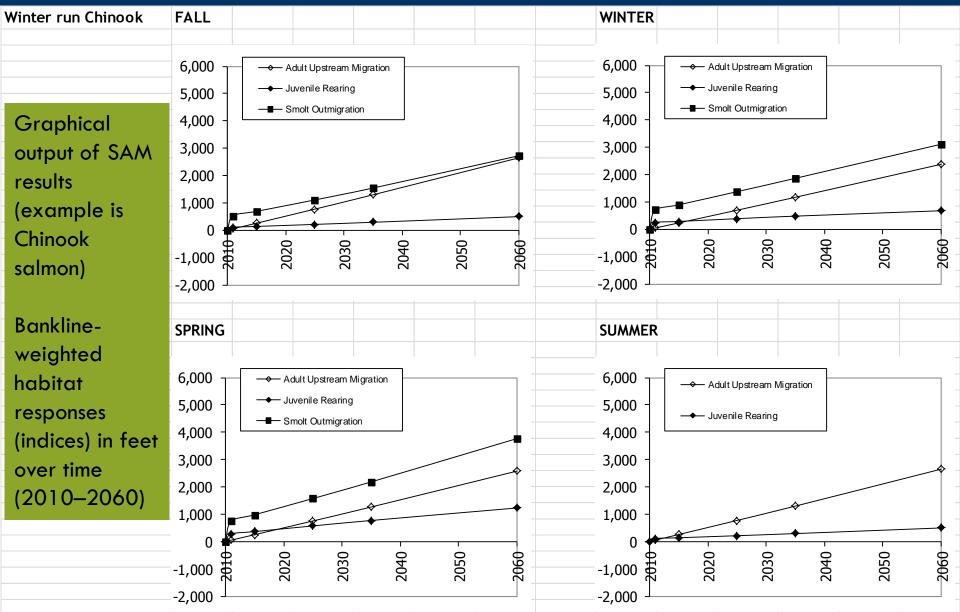
SAM Model Inputs

2060

(% shoreline)

Habitat Inputs | Example for Habitat Unit No. 5 Left (5L) under WITH-PROJECT conditions **Seasonal Values** Fall Summer Habitat Parameter Water Year Winter Spring 2010 857,132 857,132 Wetted Area 857,132 857.132 (square feet) 2060 1,390,581 1,390,581 1,390,581 1,390,581 2010 3.044 3.044 3.044 3.044 Shoreline Length 2060 (feet) 4,939 4,939 4,939 4,939 **Bank Slope** 2010 3.5 3.5 3.5 3.5 2060 3.7 3.7 3.7 (dH:dV)3.7 Floodplain 2010 1.0 8.0 8.0 1.0 Inundation Ratio 2060 5.0 5.0 1.0 1.0 (AQ2:AQavg) 2010 0.3 0.3 0.3 Bank Substrate Size 0.3 (inches) 2060 0.3 0.3 0.3 0.3 Instream Structure 2010 0 0 0 0 (% shoreline) 2060 18 18 18 18 Aquatic Vegetation 2010 13 63 63 13 (% shoreline) 2060 13 63 63 13 **Overhead Shade** 2010 3 2 3 1

Post-rock removal and meander migration conditions: (1) channel length (and area) increase (from meander-migration model), (2) banks are now native substrate (post-rock removal), (3) increased IWM, vegetation, and canopy from channel migration into existing riparian forest.


7

20

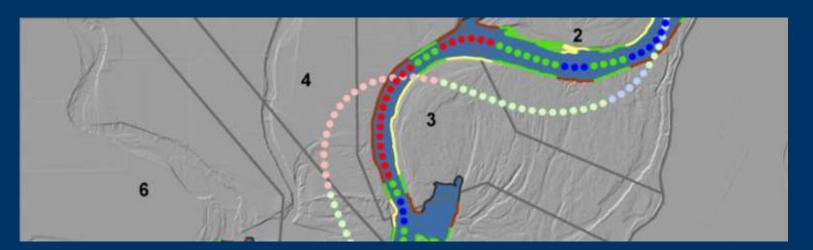
27

27

SAM Results

Significance of Results

Positive habitat gains from combination of increased channel dimensions (i.e., length [sinuosity]) and some from "improved" bank-cover attributes in most habitat units due to migration into dense riparian forest: \uparrow Canopy $\rightarrow \uparrow$ IWM recruitment


Net habitat gains range \sim 500–4,000 linear ft and \sim 100,000–1,000,000 square ft for salmonids and sturgeon

Putting this increase in perspective:

Bank lengths increases by \sim 4,000 ft and wetted area by 1M sq ft:

Conclusions - Methodology

- Enhanced typical SAM approaches to incorporate 1-D meandermigration results and interpret associated riverine processes, including change in channel position and profile, point-bar development, riparian forest succession, and woody material recruitment.
 - The new techniques provide a repeatable means of extrapolating future habitat variables from the spatially limited datasets.

Conclusions - Results

- Greatest benefits would be achieved by promoting active channel migration capable of increasing channel sinuosity and/or forming cutoffs, which would increase length of shallow shoreline habitat.
- Analysis provides initial confirmation that expansion of the river floodway will potentially improve aquatic habitat conditions

Technical Preparation

Glen Leverich Stillwater Sciences Senior Geomorphologist

Noah Hume Stillwater Sciences Senior Aquatic Ecologist

Rafael Real de Asua Stillwater Sciences GIS Analyst Management Review

Stacy Cepello DWR-FESSRO Program Manager II

Adam Henderson DWR-FESSRO Senior Environmental Scientist

Ray McDowell DWR-FESSRO Program Manager I

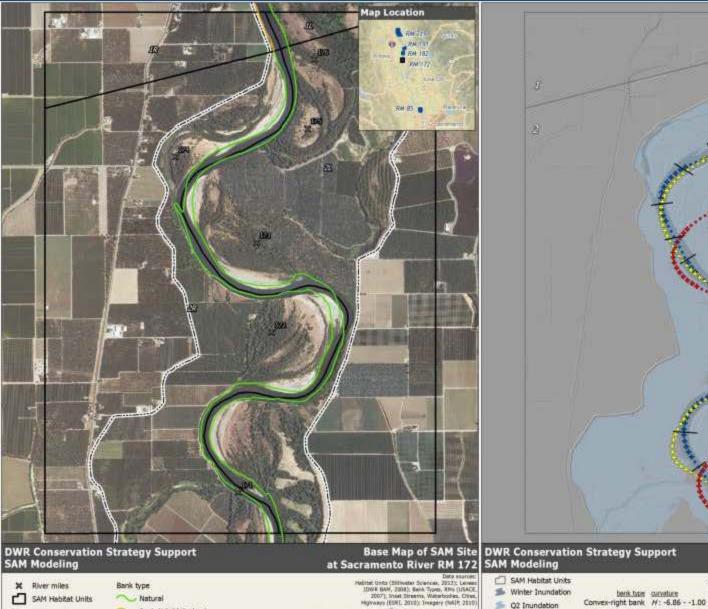
Ron Melcer DWR-FESSRO Senior Environmental Scientist Independent Review

Steve Chainey AECOM Senior Ecologist

Lynn Hermansen AECOM Restoration Ecologist

Eric Larsen UC Davis Associate Research Scientist

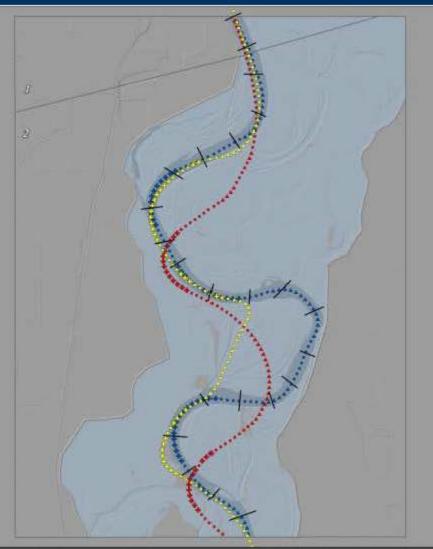
Future Considerations / Data Needs


- Adequate consideration of downstream habitat responses
- Programmatic approach to evaluating site suitability
- Other onsite habitat enhancement/mitigation features
- Adult migration response to changing channel dimensions
- Consideration of steelhead spawning at upper sites...?
- Reach-specific hydraulic data
- Updated, seamless elevation surfaces
- 2-D meander-migration modeling \rightarrow x-sect profiles
- Field inventory of existing habitat conditions
- Other site-evolution models (e.g., EAH, riparian growth, IWM)

Sac RM 172 – Natural Meander Cut-off

Sollwater Sciences

DWR Bathymetric


Cross-section

880 3,580

SRBPP Levees

Rock (12-20 Inches)

existing modeled

- - -

Straight-connector N: -0.99 - 1.00

Convex-left bank H: 1.01 - 5.58

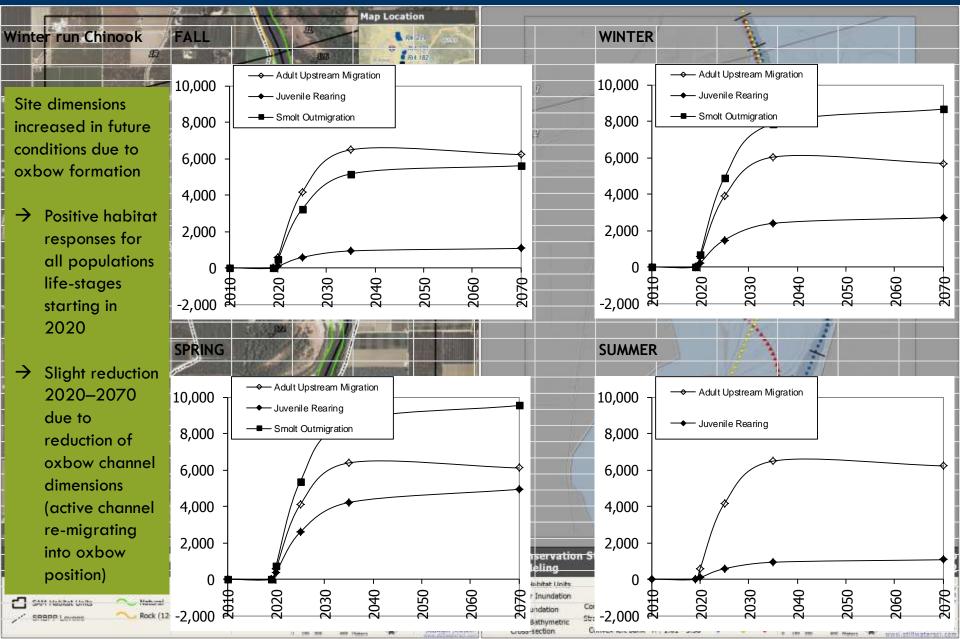
2010 2020 2070

Channel Migration and Inundation Map

Habitat units, Imundation: StiPwater Sciences, 2013

Channel position: Dr. Eric Larsen, 2012

LIDAR, Cross-sections: DWR, 2007


(CE D)

Stillwater Sciences

of SAM Site at Sacramento River RM 172

500 1.00D

Sac RM 172 – Natural Meander Cut-off

