

Evaluation of Restoration Actions in the San Joaquin River: Lessons Learned

Chip McConnaha willis.mcconnaha@icfi.com Greg Blair Laura McMullen Monique Briard ICF International

SAN JOAQUIN RIVER RESTORATION PROGRAM

San Joaquin River Restoration Program (SJRRP)

- San Joaquin River Settlement Agreement (2006):
- Restoration Goal To restore a naturally producing population of spring-run Chinook salmon to the main stem San Joaquin River below Friant Dam to the confluence of the Merced River
- Water Management Goal To reduce or avoid adverse water supply impacts on water contractors
- SJRRP was created to implement the settlement agreement
 - TAC
 - Fisheries Work Group

Spring-run Chinook Habitat Restoration Evaluation

- Minimum Restoration (Baseline)
- Reach 2B: 8 alternatives (restoration + flow routing)
 - Narrow vs. wide floodplain restoration
 - Mendota Pool Bypass (new)
 - Fresno Slough Dam (new)
 - Short Canal (new)
 - Combinations
- Reach 4B: 15 Alternatives (restoration + flow routing)
 - Levee setbacks
 - Flow routing (SJR, Eastside Bypass, Sand Slough, Mariposa Bypass
 - Re-vegetation
 - Combinations
- 2B + 4B Aggregate
 - Reach 2B: Wide floodplain, maximum conveyance; Mendota Pool Bypass
 - Reach 4B: Eastside bypass-Mariposa-Mainstem, maximum floodplain

THE SAN JOAQUIN SPRING CHINOOK HABITAT MODEL

San Joaquin Spring Chinook Habitat Model

- Evaluated potential of habitat to support spring-run Chinook
- Computes parameters of a Beverton-Holt relationship as a function of <u>habitat quantity and quality</u>
- Habitat evaluated across multiple life history pathways and integrated to population level
- Based on Ecosystem Diagnosis & Treatment (EDT) platform
- Parameterized using reachlevel environmental data
- HEC-RAS
- Riverware
- HEC-5Q 1-D Temperature

Model Setup

All scenarios analyzed under 3 water year conditions:

- Dry
- Normal-Wet
- Wet

Modeled Spring-run Chinook Life Histories

Hypothesized and evaluated alternative potential life history tactics

		Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	
	Adult return													
	Adult holding													
	Spawning													
	Incubation													
	Winter Fry													
	Project area rearing													
	Delta residence													
	Spring Parr (above Chowchilla form)													
	Project area rearing													
	Delta residence													
	Spring Parr (below Chowchilla form)													
	Project area rearing													
	Delta residence													
	Yearling smolts													
	Project area rearing Year 1													
	Project area rearing Year 2													
	Delta residence													

MINIMUM RESTORATION BASELINE

Minimum Restoration Scenario (base condition)

- Temperature Adjusted Settlement Agreement flow: 4500 cfs through Reach 2B
- Full fish passage at all existing barriers
- Baseline for comparison to all restoration alternatives

San Joaquin River Habitat Potential for Spring-run Chinook under Minimum Restoration

Integrated Performance of Spring-run Chinook Life Histories—Minimum Restoration

REACH 2B RESULTS

Reach 2B Project Area

Modeled Reach 2B Floodplain Restoration

Reach 2B Restoration Combination Results

REACH 4B RESULTS

Reach 4B Project Area

Reach 4B Restoration Combination Results

AGGREGATE RESULTS

Aggregate Scenario

Results of Combined 2B and 4B Restoration on Spring-run Chinook

CONCLUSIONS: LESSONS LEARNED

Lessons Learned

- Lesson 1: The model provides the means to evaluate and compare restoration actions
- Lesson 2: Restoration of spring-run Chinook will require multiple actions throughout the project area
 - Actions act synergistically
 - Order of restoration matters
- Lesson 3: Large-scale constraints limit effectiveness of local actions
 - Rapid rise in water temperature downstream of Friant Dam
 - Lower San Joaquin and Delta issues
- Lesson 4: Restoration actions must be closely matched to fish life history
 - Floodplain inundation, flow and temperature sync with fish movement
- Lesson 5: Local and large-scale factors will limit spring Chinook abundance
 - Aggregate scenario=> 200-500 fish, productivity ~2.5 returns/spawner