Influence of incomplete capture on fish monitoring and management: problems and solutions

James T. Peterson USGS Oregon Cooperative Fish and Wildlife Research Unit Oregon State University, Corvallis, Oregon

The Elephant in the Living Room

Incomplete Capture

Species differences

Habitat effects

Changes in fisheries

- New technology
- New designs
- New objectives

Systematic bias

Illustration of systematic bias: Interagency salmonid monitoring

Sampling via standardized snorkeling protocol, since 1986

Snorkel efficiency

Water temperature (+) Visibility (-) Others..

Thurow et al. 2006

Mean daily discharge during monitoring period in the lower Salmon River, Idaho

Pearson correlation

Mean estimated snorkel efficiency during monitoring

Approaches to minimize the influence of incomplete capture

Develop capture/detection probability models Mark-recapture Dual gear

fish abundance is estimated using unbiased estimator

Dual gear example

Fishes of Champaign County, Illinois: 1900 - 1990 100's locations sampled every 30 years-New technology – new sampling methods Changes in habitat- channelization Calibrated each method using rotenone as secondary gear Adjusted historic data using capture probability models

Approaches to minimize the influence of incomplete capture

Develop capture/detection probability models Mark-recapture Dual gear

Employ statistical population estimators Capture-recapture Distance sampling Occupancy

Population estimator example

Freshwater mussel population dynamics and management in the Flint Basin, GA

20 years mussel catch data collected 100+ sites throughout Different levels of effort: quantitative, complete search, qualitative Different crews - misidentification of mussels likely

Resampled each site using historic protocols

Occupancy design, crews with various levels experience

Fit dynamic multi-state occupancy models with incomplete identification

Historic and new data meta-demographic rates, identification error

Systematic bias in estimated mussel metademographic rates

Shinyrayed Pocketbook, Hamiota subangulata

Short term high flow spring season (standardized)

Important consideration: how will the data be used?

Adaptive Resource Management

Monitoring data are directly compared to predictions under alternative hypotheses

Monitoring and Adaptive Resource Management

Monitoring variables *must* match model predictions

weights updated using monitoring data and predicted responses

Model prediction	Monitoring variable
Population size	Abundance
Species richness	Number of species
Species occupancy/distribution	Number or proportion of areas occupied
Area burned	Amount of area burned

Avoid biased measures

e.g., population indices, catch-effort indices Misleading information = bad management decisions

Seeing the Elephant

Recognize detectability is important

Greater use of population estimation methods

Develop and employ methods for adjusting historic data

Greater emphasis on validating methods