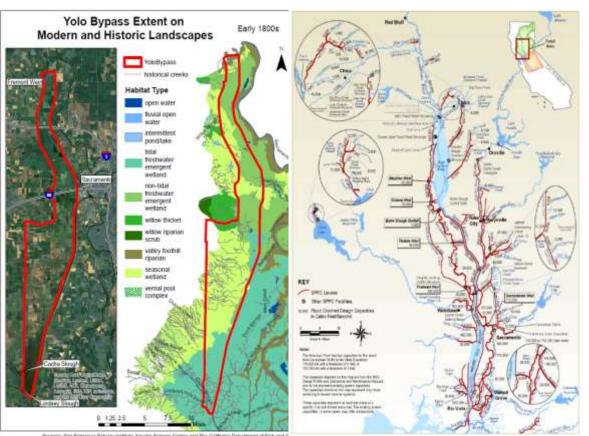
Reconciling Fish, Farms and Fowl on an Engineered Floodplain in California: the Yolo Bypass

Robyn Suddeth PhD, Hydrologic Sciences UC Davis Center for Watershed Sciences (currently at CH2M Hill)

Work funded with support from the Delta Science Program


What's So Special About the Yolo Bypass Today?

Location

Many uses

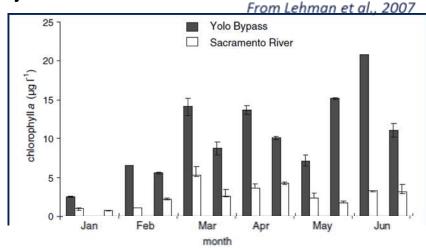
BDCP

But More Importantly...

Test Case for Floodplain Reconciliation:

Can an ecologically functioning floodplain exist in a highly engineered system?

What is Reconciliation(as opposed to Restoration)? And why are we talking about it on the Yolo Bypass?

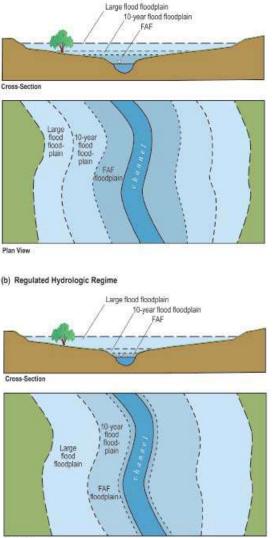


In Many Ways, the Bypass is already a reconciled system...

Table 1. Counts of several major bird groups from 12 monthly surveys at Yolo Basin Wildlife Area during 1998 and 1999. The total number of individuals is shown for each year with the total number of species (in parentheses). Note that the observations represent the results of one survey day each month and therefore do not represent annual population estimates. Source: Dave Feliz, California Department of Fish and Game, unpublished data.

Bird Group	1998 Total	1999 Total	Dominant Species (top three)
Diving ducks	4,631 (7)	6,281 (7)	Ruddy, canvasback, scaup
Puddle ducks	44,493 (7)	173,323 (7)	Wigeon, mallard, shoveler
Geese and swans	136 (5)	192 (4)	Canada goose, white-front goose, snow goose
Raptors	224 (11)	269 (13)	Northern harrier, red-tailed hawk, Swainson's hawk
Shorebirds	3,485 (14)	18,530 (11)	Western sandpiper, dowitcher spp., dunlin
Wading birds	452 (2)	1,222 (2)	Black-necked stilt, American avocet

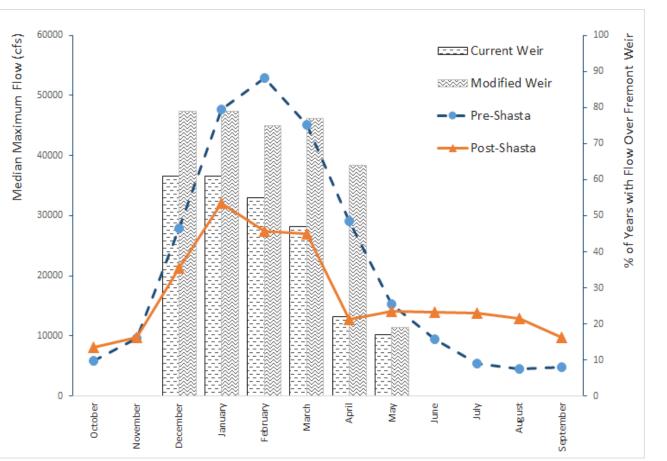
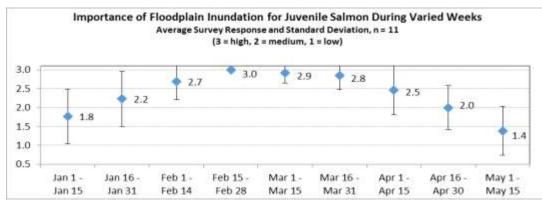
• Sommer et al. (2001) and Knaggs Ranch Experiments Chinook salmon that rear in Yolo Bypass grow faster than those remaining in the Sacramento River

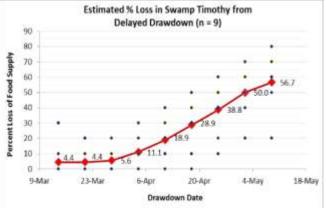

• Feyrer et al., 2006

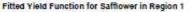
Splittail reproduction is correlated to Yolo Bypass flooding

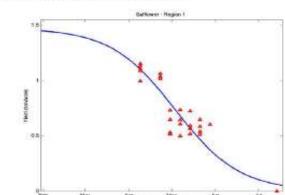
But there is room for improvement

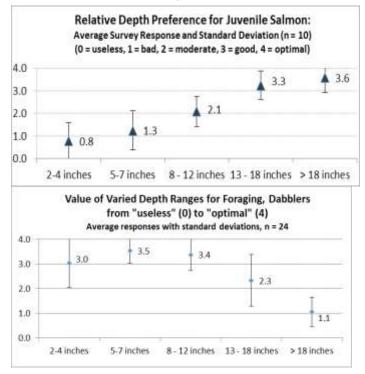
(a) Unregulated Hydrologic Regime



Figure 3. Median monthly high flows in the Sacramento River at Red Bluff, before and after the construction of Shasta Dam (Source: waterdata.usgs.gov), and proposed monthly increases in flood frequency on the Yolo Bypass (U.S. Department of the Interior et al. 2013). Reservoir operations flatten out the flow distribution through time, decreasing the liklihood of flooding in the winter and especially in the spring. Proposed modifications to the Fremont Weir seek to increase availability of flows during these months to more closely resemble historical flooding.


Plans to notch the Fremont Weir are not without some Perceived Conflicts...


Timing:



Depth

Remaining Questions for the Yolo Bypass....

1. What do the tradeoffs between economics and fish and bird habitat on the bypass actually look like?

2. Can additional flows be applied to this landscape in a way that improves fish habitat while still supporting water birds, recreation, and farming? (And if so, how?)

3. What are the land use and policy implications? How much and what kinds of mitigation are necessary to get to a more reconciled system? How much engineering is necessary?

Pulling It All Together...

Using a Spreadsheet Multi-Objective

Model to Analyze Tradeoffs and Suggest

Promising Management Alternatives

Decision Variables

Direct:

- Total Acres of Each Land Use Type in 6 Agricultural Zones
- Acres Flooded (by land use type and zone), further separated by:
 - **Depth** (2 4 in., 5 7 in., 8 12 in., 13 18 in., or > 18 in.)
 - Timing (weekly time steps)

Implied:

• Duration

3 Primary Objectives

Economics:

- Agriculture
- Hunting & Recreation
- Maintenance

Bird Habitat Quality:

- Current Year Foraging for dabbling ducks and shorebirds
 - Following Year's Food Supply
- Complexity

- Rearing habitat for juvenile Chinook salmon and splittail, and spawning habitat for adult splittail
- Complexity

Constraints

Physical Realities:

- Maximum Total Area
- Min and Max Land Use Areas
- Continuity of Land Use
- Continuity of Flooding
- Maximum Duration
- Non-negativity...

Xı feasible region

And Two of the Objectives:

- Minimum Habitat Quality for Fish
- Minimum Habitat Quality for Birds

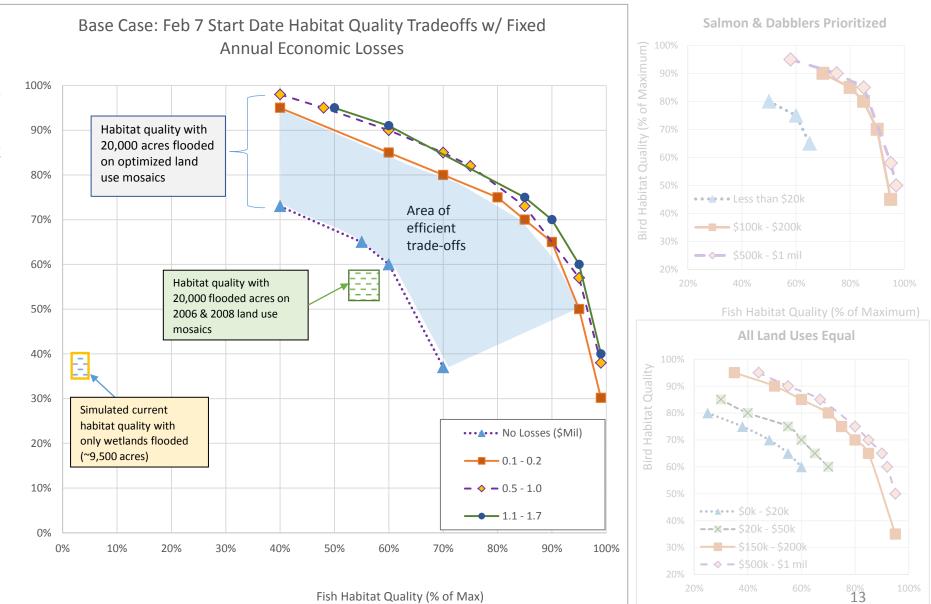
Spreadsheet Optimization Model

Start D	ate of F	looding									
Februa	ry 12th								YOLO BY		\$ 8,693,022
		ZONE 1 TO	TAL PROFI	r:	\$ 9	94,863.48			8	_	
				ZONE	1 decisi	on varia	ble - AC	REAGES			
Week 1							ACC 2010				
						Lan	d Use				
Depth Zone	Rice (R)	Wild Rice (WR)	Com (C)	Tomato (T)	Pasture (P)	Safflowe r (5)	Fallow (F)	5easonal Wetland (SW)	Wetland	Hunted (private) Wetland s (HW)	Riparian (RP)
0	341.2	0.0	P		the second second						
1	0.0	0.0			265.0			0.0			
2	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0
4	0.0	11 10100	inclusion of the local data		0.0		-				
5	0.0	0.0	0.0	0.0			0.0	0.0	0.0		
looded:	0	0	0	0	265.049	0	0	0	0	0	0

Value of I	nundati	on in V	/eeks 1	throug	h 8						
	2/19 - 2/25						4/2 - 4/8	SUM		MAX	
100	100	97	97	97	95	95	82	763		764	
0.05	0.1	0.2	0.25	0.15	0.1	0.1	0.05	1			
Relative \	/alue of	Depth	Zones 1	- 5	1	Maxim	um Floc	ded Ad	reage:	20000	
2 - 4 in	5 - 7 in	8 - 12	13 - 18	>18 in	SUM				101404		
22	35	58	91	100	306						
Total Acres & Land Use	Com- plexity										
0,7	0.3	-					SUM LA	AND US	829		
Land Use Type	R	WR	с	T	p	s	F	sw	PW	нw	RP
Relative		76	46						78		

Quantitative multi-objective models can integrate vast amounts of data and describe complex relationships b/w decisions and system objectives.

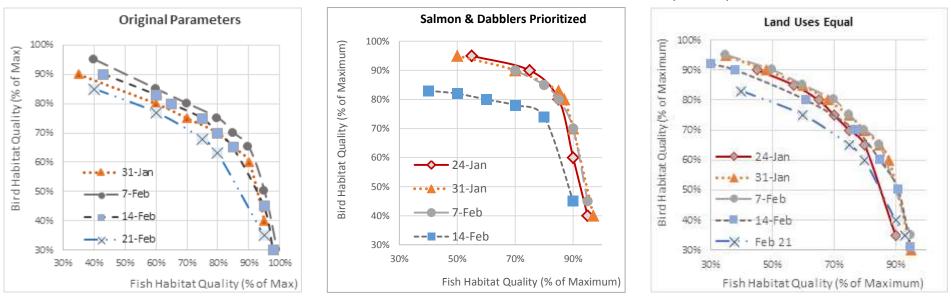
- Over 3000 decision variables
- Each decision effects the economic and habitat performance functions in unique ways


Models can also incorporate new knowledge or test varied assumptions.

- All habitat function weights are adjustable
- So are agricultural parameters, and land and water management constraints

Running the model under a range of habitat assumptions

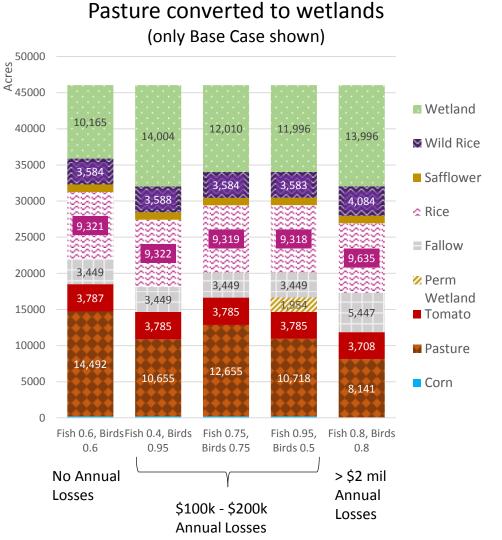
- All land uses equal for fish
- Complexity weight reduced (all species)
- Salmon and dabblers prioritized over splittail and shorebirds
- More linear timing and duration preferences


Results: Tradeoffs

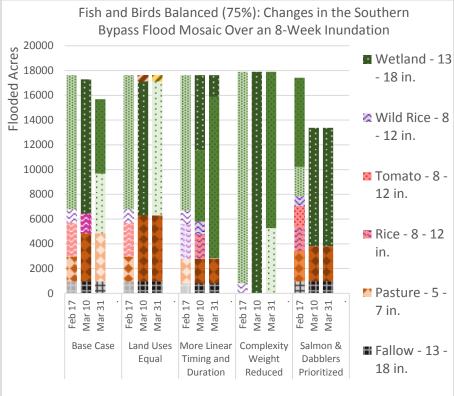
Bird Habitat Quality (% of Max)

Results: Start Date

Habitat Tradeoffs with Varied Start Dates. Annual Losses Constant at \$100k - \$200k



Achieving 75% Habitat Quality for Fish and Birds - Implications for Individual Species Given Varied Start Dates and Parameters


14

What Happens in the Area of Efficient Tradeoffs?

Permanent Land Use Change:

Flood Management: Optimal placement (and **movement**) of water through time

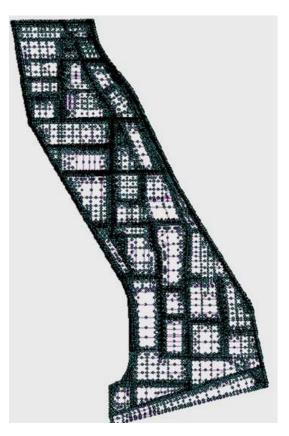
More varied land uses in beginning, shifting to pasture and wetlands in later weeks. Depth varies with timing preferences for different bird and fish species.

Conclusions

Tradeoffs:

- 1. We can do better for fish and birds on the bypass with little annual costs for farmers.
- 2. A compensation package of \$100,000 \$500,000 per year to farmers or bypass landowners should be adequate for a reconciliation program

Land Use


- 1. Cheapest way to improve habitat is to exchange some pasture in the southern bypass for wetlands.
- 2. Agricultural land uses can contribute to fish and bird habitat quality at very little cost, as long as flooding is optimized in space and time. (Rice and wild rice are a part of the flood mosaic in February, but are phased out in March.)
- 3. It might be worthwhile to grow additional acres of rice and wild rice as habitat.

Flooding Management

- The best start date for an 8-week inundation is between late January and mid February. Later start dates in this range better balance benefits across individual fish and bird species. Earlier start dates favor salmon and dabblers.
- 2. Hydraulic management and movement of flows can significantly increase the costeffectiveness of bypass inundation
- 3. Tools like this one can help guide this hydraulic management and integrate new 16 knowledge into decision-making

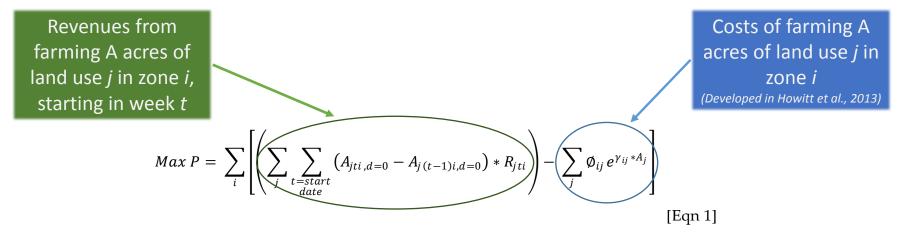
Next Steps for this Model

- Iteration with a 2-D Hydrodynamic simulation model
 - Changing physical constraints in the multiobjective model to reflect realities of flow distribution across different zones
 - Modifying bypass infrastructure in the 2-D simulation model to replicate optimal solutions.
- Alter agricultural parameters to test sensitivity to changing economic trends, and look more closely at marginal costs for added rice
- Change habitat objectives as more knowledge becomes available.

Questions?

Sincere thanks to my advisors,

Jay Lund and Jeff Mount,


the Delta Science Program

And to all others whose input and expertise helped greatly with this work:

Peter Moyle, Richard Howitt, William Fleenor, Josue Medellin-Azuara, Cloe Garnache, Carson Jeffres, Jacob Katz, Catherine Lawrence, and many others

Extra Slides

Economic Objective

Where

i = agricultural zone, as defined in Howitt et al. (2013)

j = land use type

d = depth

t = week

A_{jti}, d=0 = Acres of land use type j in zone i at time t that are no longer flooded.

 R_{jti} = the annual revenues from land use j in zone i, available for use by time step t.

And ϕ_{ij} and γ_{ij} are cost parameters for farming A acres of land use j in zone i, taken from an agronomic model of the Yolo Bypass developed for a separate study (Howitt et al., 2013)

Habitat Quality Objectives

		Weigh	ts (α _{sj})			Weigh		
	Land Use Type (j)	Splittail	Fall-Run Chinook Salmon	Timing	(t)	Splittail	Fall-Run Chinook Salmon	
	Rice	0.61	1.00*	Jan 1 - Jar	n 15	0.40	0.59	
	Wild Rice	0.63	1.00*	Jan 16 - Ja	n 31	0.47	0.74	
	Corn	0.31	0.46	Feb 1 - Fel	b 14	0.67	0.90	
	Tomato	0.31 0.46		Feb 15 - Fe	b 28	0.87	1.00	
	Pasture	0.73	0.78	Mar 1 - Mar 15 Mar 16 - Mar 31 Apr 1 - Apr 15 Apr 16 - Apr 30 May 1 - May 15		1.00	0.97	
	Fallow	0.71	0.79			1.00	0.95	
	Riparian	0.92	0.97			0.93	0.82	
	Seasonal Wetlands	1.00	1.00			0.80	0.67	
	Permanent Wetlands	0.66	0.78			0.47	0.46	
	Safflower	0.45	0.53					
	epth (d)		Spirituan Weights		on Weights Dabl _{salmon, d}) (8		Shorebird \ (δ _{shoreb}	
1:	2 – 4″	0.21		0.22		0.86	1.00)
2:	5 – 7"	0.38		0.35		1.00	0.75	5
3:	8 – 12″	0.71		0.58		0.95	0.44	ļ

	Weight (β_{sA} and β_{sC})			
Flood Characteristics	Fish	Birds		
Total area, depth, and land use types flooded	0.7	0.68		
Complexity (entropy) of flooded land uses	0.3	0.32		

0.91

1.00

0.66

0.30

0.11

0.04

Zone

Zone Zone

Zone 5:

13 - 18'

> 18"

1.00

1.00

Max HQ_{fish or birds}

$$= \sum_{s} P_{s} \sum_{\substack{t=start\\date}} \omega_{ts} \,\delta_{ts} \sum_{d} \delta_{ds} \sum_{j} \beta_{sA} \left(\frac{A_{jtid} * \alpha_{sj}}{Max(A_{jtid} * \alpha_{sj})} \right) \\ + \beta_{sC} \left(\frac{Entropy(A_{jtid})}{Max Entropy} \right)$$

[Eqn 2]

Where

 P_s = the amount that habitat quality for species s contributes towards total fish or bird habitat quality (set at 0.5 initially so that salmon and splittail are equally prioritized for the total fish habitat quality score, and dabblers and shorebirds are equally prioritized for the total bird habitat quality score.)

 ω_{ts} = marginal benefit of each additional week of flooding for species s

 δ_{ts} = relative importance (weight)of flooding at time t for species s

 δ_d = relative benefit (weight) of flooding in depth zone d for species s

 α_{sj} = the relative benefit (weight) of land use j as habitat for species s

 B_{sA} and $\beta_{sC} =$

relative importance of total area and land use types flooded (A) versus complexity (C)for species *s*, where complexity is expressed with an entropy function.

 A_{jtid} = the acreage of land use j in week t

Entropy is calculated as $E = \left(\frac{A_{jt,d>0}}{\sum A_j}\right) * -ln\left(\frac{A_{jt,d>0}}{\sum A_j}\right)$

21