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Making Connections

Sacramd .

l Sacramento-San Joaquin
Bay Delta connections e

— Weather ™~
— Flows @
— Physical impacts

— Chemical impacts

— Ecosystem impacts
— Invasives

Multiple stakeholders

Requires integrative %y
modeling, cooperative Y N [Tt
planning, and adaptation [} = . ..

(=



INTEGRATED ECOLOGICAL RESPONSE MODELS
FOR WATER LEVEL REGULATION (IERM, IERM2)

Simulation of shoreline ecosystem responses to varying
water level regimes governed by regulation and net basin

hydrologic supplies for Lake Ontario-St. Lawrence River and
Upper Great Lakes




LOSL Study — Water Level and Flow
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IERM Conceptual Model — LOSL Study
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Iterative Process of Regulation Plan
Evaluation and Design

Starting Point - 100-year NBS series
Existing Criferia (historical, stochastic and
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5{' IERM Pl Target Visualization I:‘ |g|
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Lessons Learned

* Ecological impacts can be integrated into

system-wide models of flow and water level
— Modelers need to work closely with biologists

* Consensus management requires an iterative

process in consultation with stakeholders
— Models need to be nimble and flexible to
accomplish that




EUTROPHICATION MODELING IN GREAT LAKES

LATE 1960’s — EARLY 1980’s

MODELS USED TO ESTABLISH P AS LIMITING NUTRIENT IN GREAT LAKES
MODELS USED TO SET TARGETS LOADS FOR PHOSPHORUS TO LAKES FOR
ANNEX 3 OF GREAT LAKES WATER QUALITY AGREEMENT

~ 2010 TO PRESENT
RECURRENCE OF HARMFUL ALGAL BLOOMS REQUIRES REASSESSMENT
IMODELS BEING USED TO ASSESS CAUSES AND DEVELOP NEW TARGETS
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LAKE ERIE CENTRAL BASIN VERIFICATION

CALIBRATION 1970 VERIFICATION 1975
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P Load - Area of Anoxia
Relationship in Central Basin

LAKE ERIE CENTRAL BASIN
DITORO MODEL
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Relationship between area of anoxia and whole-lake phosphorus load in the Central Basin of Lake Erie for the
DiToro model




| An overview of phosphorus loading to Lake Erie \

Lake Erie Total Phosphorus Loading by Major Source
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Re-occurrence of Harmful Algal Blooms
and Nuisance Benthic Algae

T PIOTT M gt S aE s

ot . o ¥ s s ’I N =
| ' - W'{-j\‘
5 S Ll & o

MODIS Aqua from 8/3/14

Toledo’s

drinking ,
water intakes




Spring Maumee DRP loads

(Heidelberg University)
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Re-Eutrophication in Great Lakes

The Problem...

— Re-occurrence of nearshore attached algal blooms (Cladophora,
Lyngbya)

— Re-occurrence of Hazardous Algal Blooms (Microcystis)

— Hypoxia in the hypolimnion of the Central Basin of Lake Erie

Potential Causes...

— Dreissenid invasion

* Impacts on light, plankton production, and phosphorus cycling
— Phosphorus loading changes

* Non-point source loads

* Phosphorus bioavailability

A Solution...
— Control phosphorus loads

But, need an assessment of how much...

— Great Lakes Advanced Aquatic Ecosystem Model (EFDC-A2EM)
framework

16
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Lessons Learned

* Behavior changes and ecosystems evolve
— Complex interactions require integrated modeling

* Models can inform adaptive management
— Help understand what’s changed
— Help set new targets
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Bay Delta Modeling Challenges

* Modeling is fragmented

— Storage, flows modeled at system scale
* Time scale based on water allocations (monthly)

— Ecosystem impacts modeled more locally
e Shorter time scales are often critical

* Scenario development
— Challenging to iterate through alternative scenarios with

existing models
— Challenging to achieve consensus

* Adaptive Management
— Challenging to represent climate futures with existing
models
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Lessons Learned — It Can Work!

* Models can help set targets to meet multiple goals.
Strive for:

— Process integration — one delta/one model
— Tractable and flexible tools that can be used iteratively

— Constructive engagement of stakeholders in that iterative
process

* Things will change and systems will evolve on a
multi-decadal scale. Integrated models can help

understand those changes and support decisions to
revise targets in the future.
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