The distribution, ecology and genetics of *Microcystis* blooms throughout the SF Bay Delta

Tim Otten^{1,2} & Hans Paerl² ¹Institute of Marine Sciences, UNC Chapel Hill ²Dept of Microbiology, Oregon State University

Presentation Overview

- Sample processing and genetic tools used to answer the following questions:
- 1. What is the *Microcystis* distribution throughout SFE and are these populations connected?
- 2. Which bioactive metabolites can it produce?
- 3. How do blooms influence microbial community structure?
- 4. What are the food web implications of these blooms relative to the Pelagic Organism Decline?

Sample Processing

1. Concentrate sample

2. Extract DNA

3. DNA is now ready for downstream applications such as PCR/QPCR or sequencing

How metagenomics advances our understanding of an ecosystem

• Unbiased view of community structure and genetic capability

Spatiotemporal Patterns

- 1. Are different *Microcystis* subtypes endemic to certain regions of the SFE?
- 2. Are samples from the confluence of Antioch representative of all *Microcystis* diversity?

Large River – Antioch and Rio Vista Small River – Old River and Mokelumne River Flooded Islands – Mildred Island and Franks Tract

Variable microcystin congeners

Analysis of A-domain binding pockets suggests -Top group produces MC-LR, RR, YR

-Middle group produces MC-RR

-Bottom group produces MC-LR

Microcystin biosynthesis (NRPS/PKS)

SF Delta Microcystis 2º metabolite biosynthesis

- 1. Aeruginosin (27.7 Kb)
- 2. Anabaenopeptin (27.8 Kb)
- 3. Cyanopeptolin
- 4. Microcystin (55.2 Kb)
- 5. Microginin (22.3 Kb)
- 6. Microviridin (9 Kb)
- 7. Piricyclamide (29.2 Kb)
- 8. + Several otheruncharacterized NRPS andPKS modules

Based on 47 freshwater CyanoHAB genomes

Mildred Island microbial community structure assessed by shotgun metagenomics

Genus richness

Food web implications – A working model

Food web implications – A working model

Food web implications – A working model

SF Delta

Conclusions

• *Microcystis* population composed of numerous strains, many of which are capable of producing several microcystin congeners

- There were no geographically distinct strains, all were ubiquitous
- Morphology was a poor indicator of species/strain or toxicity
- These strains are able to produce a variety of 2° metabolites that may directly or indirectly impact the food web
- During bloom events *Microcystis* cells outnumber all other organisms in the near surface water column and community diversity is halved
- Shotgun metagenomics provides for an unbiased assessment of community structure and function

This project is being funded by Delta Science Program (Agreement # 2044)

Special thanks to all of our collaborators:

- Wilkerson Lab and Alex Parker (PI) at SFSU
- •Kimmerer Lab at SFSU
- Kudela Lab at UCSC
- Paerl Lab at UNC

Delta Stewardship Council

