

Susan De La Cruz, John Takekawa, Stacy Moskal, Mason Hill, Lacy Smith, Ashley Smith
USGS Western Ecological Research Center, San Francisco Bay Estuary Field Station

John Krause - California Department of Fish and Wildlife, Eden Landing Ecological Reserve Manager

Importance of SFB for wintering diving ducks

Cosco Busan oil spill

Restoration Project: Mixed species pond management

- Complements on-going efforts to restore the South Bay Salt Ponds
- Maintain and manage pond habitat for wintering Lesser Scaup and other small diver species
- Same ponds managed for Snowy Plover nesting during the summer

South Bay Salt Pond Restoration

- Largest tidal wetland restoration on west coast
- Mixed species management
 - Winter: deep, circulating water
 - Summer: dry with water circulating only in borrow ditches
- Past: 95% of diving ducks in ponds used those with circulating water all year
- How can we optimize mixed species management for wintering diving ducks?

Research Questions

- What pond characteristics attract diving ducks?
- Are diving ducks using mixed management ponds in comparison to ponds filled year round?
 - How are they using ponds?
- Do benthic invertebrates (a.k.a. diving duck foods) persist over summer when pond is mostly drained?
 - What species?
 - Where? Borrow ditches, natural channels, panne
- How quickly do invertebrates colonize when ponds fill?
- What are diving ducks eating in managed ponds compare to ponds filled year round?

Project Objectives

1. Identify physical and landscape characteristics of ponds that enhance diving duck abundance

2. Measure diving duck densities and behavior in mix-management ponds compared to year-round circulation ponds

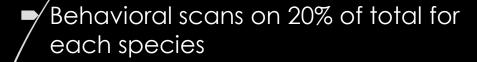
3. Evaluate diving duck diet and benthic prey availability in mix-management ponds compared to year-round circulation ponds

Obj 1 Methods: pond characteristics

- 10 years grid-based duck density data from monthly counts of 57 SBSP ponds
- Information theoretic (AIC) approach to evaluate suite of models (GLMM) relating diver densities to:
 - Depth
 - % accessible area
 - Salinity
 - Distance to landscape features (Bay, levee, urban)
 - Prey resources
 - Other pond features
- Modeling in progress results expected early 2015

Methods: project and reference ponds

- 3 project ponds 6B, 6A, 8
- Seasonal 2005 to 2008 just took in rainwater
- 2008 put in water control structures
- 2011 circulation in borrow ditches throughout the year
- Managed for <44 ppt salinity</p>
- 3 Reference Ponds 1, 7, 10
- Circulating ponds, filled all year



Obj 2 Methods: duck densities and behavior

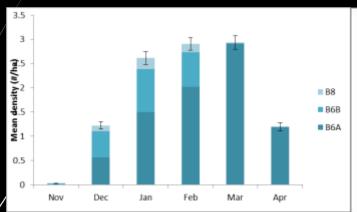
- Avian Surveys:
 - Complete pond counts
 - 2X per month
 - **■** 250 m² grids

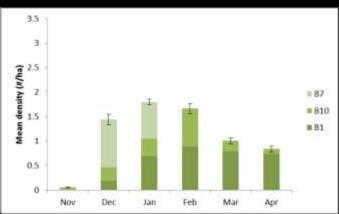
- Species = scaup, ruddy duck, bufflehead
- Randomly chosen individuals
- Watch 10 sec, record last behavior
- Reduces bias towards missing foraging behavior

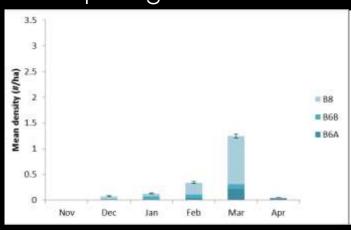


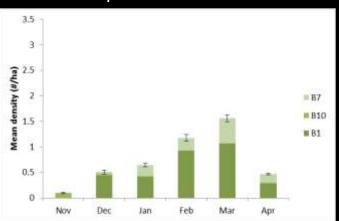
Obj 3 Methods: prey availability and diet

- Prey Availability:
 - Oct, Jan, Mar
 - → 18 sampling locs per project and reference pond.
 - Stratified random 6 each in:
 - borrow ditches, natural channels, pannes
 - Benthic cores 3 replicates
 - Rinsed through 0.5-mm sieve, identified, enumerated, biomass
 - Water quality continuous
 - Diet:
 - Hunter Collections
 - Esophagus and proventriculus prey items:
 - Identified, enumerated, dry biomass
 - Percent Index of Relative Importance (IRI)
 - IRI = (%N + %DW)*%FO
 - Alleviates bias of using any one index alone

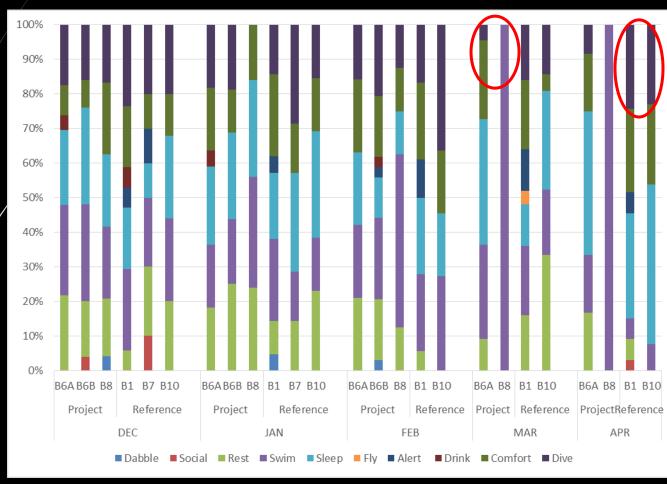







Ruddy ducks – higher densities in project ponds

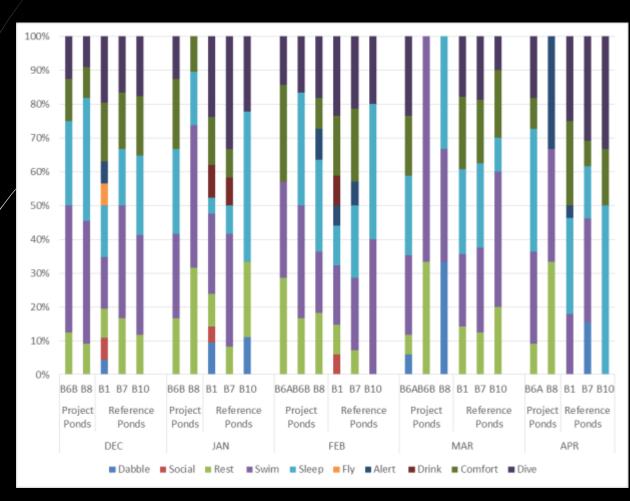
Scaup – higher densities in reference ponds



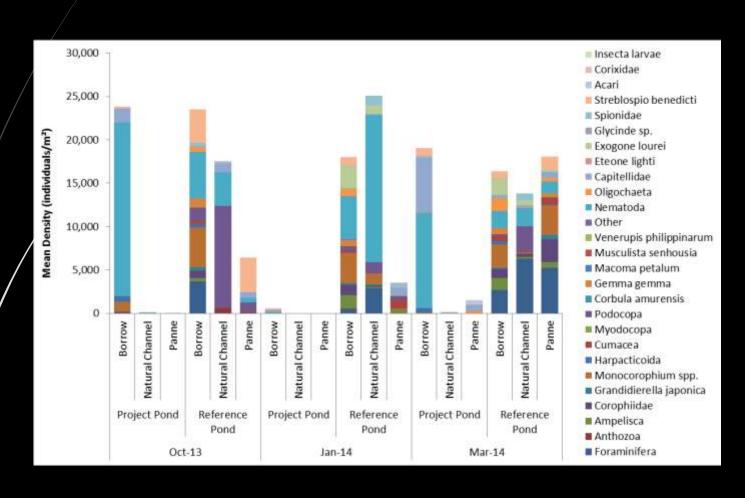
Project

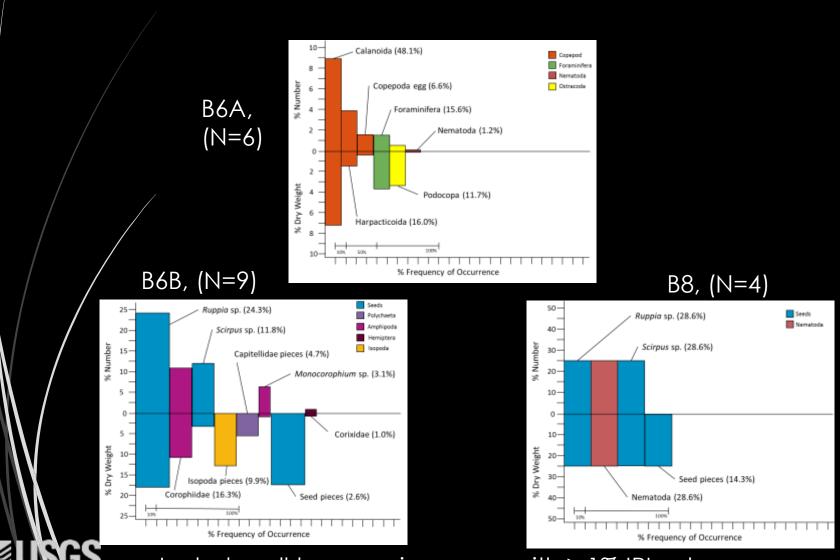
Reference

Ruddy duck behavior



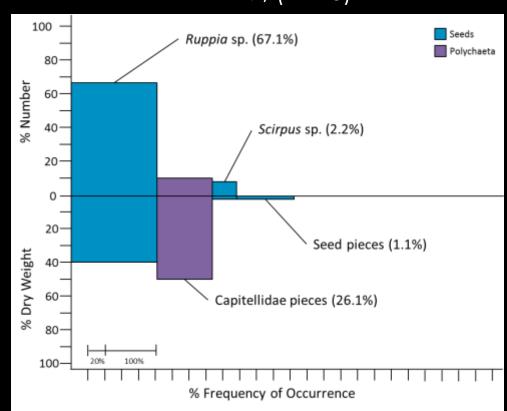
Scaup behaviors – scan results




Invertebrate densities across pond features

Ruddy duck diets in project ponds

Includes all taxonomic groups with ≥ 1% IRI value.



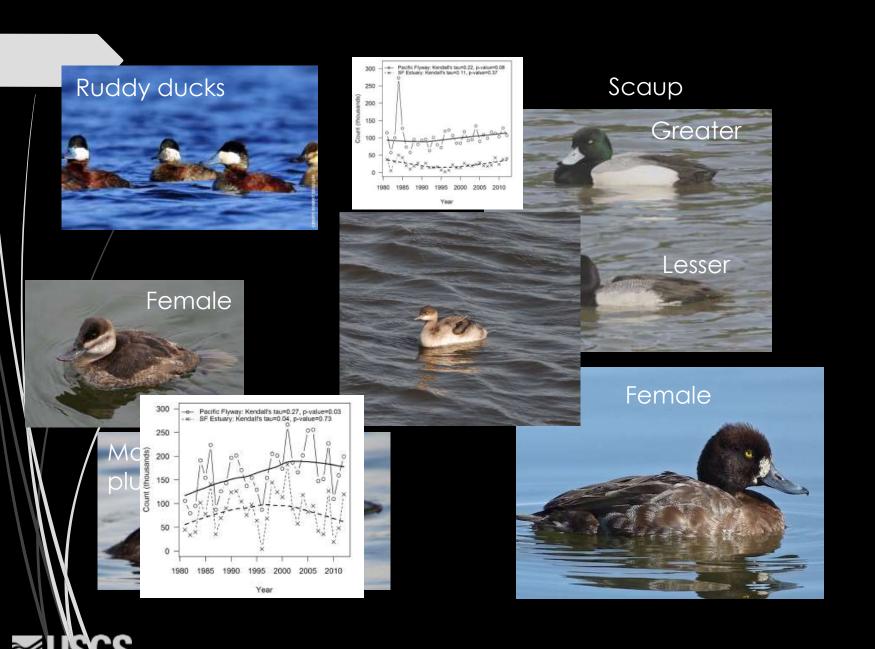
Ruddy duck diets in reference ponds

B7,
$$(N = 3)$$

- All birds harvest in B1 and B10 had empty
 Gls
- Few species in diet
- Difficulty in getting diet information on hunt days
- Are hunters harvesting birds foraging in ponds?

Discussion

- Preliminary results from our first year of work suggest:
- Higher scaup densities in reference ponds and higher ruddy ducks densities in project ponds
- Similar behaviors between project and reference ponds with foraging comprising less than 30% of observed behaviors of both scaup and ruddy ducks in all ponds
- Ruddy duck: declines in foraging in project ponds during Mar and Apr when water draining
- Invertebrate densities and species richness appeared higher in reference ponds during some seasons
- Within pond features in project ponds, borrow ditches appeared to harbor higher densities of invertebrates
- IRI analyses suggest diets differ among all ponds perhaps a function different salinities, small sample sizes, lack of foraging on hunt days



Upcoming work

- Finish Objective 1 modeling pond characteristics
- Scientific collections on non-hunt days?
- Evaluate relationships between water quality parameters and invertebrate densities, species richness
- Add epibenthic sweep and aquatic invertebrate sampling to evaluate prey availability in water column

Outline

- Oil spill and diving duck losses
- SFB and wintering divers
- NRDA Trustees requirements for restoration
- Salt pond project and mixed species management
- Eden Landing managed ponds and timeline
- Project Objectives
- Methods Obj 1 pond characteristics underway
- Methods Obj 2 pond use and behavior Include map of project ponds
- Methods Obj 3 diets and prey preferences
- Results
 - Obj 2 Densities by pond
 - Obj 2 Scan behaviors across ponds
 - Obj 3 RUDU Diets FO vs % # graphs
 - Obj 3 RUDU Diets IRI results
 - Obj 3 Pond Invertebrates By reference and treatment
 - Obj 3 Pond Invertebrate By pond characteristics
- Conclusions and managements implications

Bufflehead behavior

Managing for multiple species

- Managed for plovers originally, but in winter
- Seasonal management from 2005 to 2008 just took in rainwater but then had discha
- 2008 put in more water control structures 6A into north creek all ponds could be independent and intake and
- 2008 2010- took 2 years to have low enough salinities to
- Now can operate all ponds in isolation,
- 6A is operated a little deeper for recurves more resident watering birds
- 2011 circulation throughout the year starts in
- Fully implemented ISP design with more flexibility
- Now fine tuning
- Pond 8 22 May 2014 Draw down,
- Pond 6B 19 March 2014 started draw down 2 weeks to get to a foot Ready for plovers by 22 May 2014; Winter flood up started up 14 Nov 2013 (some water on in Aug and Sept for shorebirds moving thru but not much)
- Pond 6A 19 March 2014 draw down; 19 dec 2013 Flood up
- 90% scenario 6A and B would be tidal

