#### Application of an Estuary Model to Quantify Factors Contributing to Low Dissolved Oxygen Conditions in the San Joaquin River Deep Water Ship Channel

Mary Kay Camarillo<sup>1</sup>, Joel Herr<sup>2</sup>, Scott Sheeder<sup>2</sup>, Gregory Weissmann<sup>1</sup>, Shelly Gulati<sup>1</sup>, William T. Stringfellow<sup>1,3</sup>

<sup>1</sup>University of the Pacific, Stockton, CA

<sup>2</sup>Systech Water Resources, Inc., Walnut Creek, CA

<sup>3</sup>Lawrence Berkeley National Laboratory, Berkeley, CA

Presented at 2014 Bay-Delta Science Conference

UNIVERSITY OF THE PACIFIC ECOLOGICAL ENGINEERING RESEARCH PROGRAM

# **Project Scope:** Model dissolved oxygen (DO) in the San Joaquin River Estuary

| Lc | ow DO problematic since the 1940s                            |  |
|----|--------------------------------------------------------------|--|
| Lo | ow DO impacts ecosystem health, water supplies,<br>esthetics |  |
| To | tal Maximum Daily Load (TMDL) project initiated              |  |
| Sc | ources of low DO need to be quantified                       |  |



Location of Ship Channel within the San Joaquin River



#### Dissolved Oxygen (DO) in Water Bodies



## Factors Influencing Low DO – San Joaquin River Estuary

#### Oxygen-demanding substances from:

- Agricultural watershed
- Wastewater effluent
- Stormwater via urban tributaries



## Deep Water Ship Channel geometry causes:

- Reduced photosynthesis
- Increased algae decay and respiration
- Reduced reaeration

## **Study Objectives**

- Calibrate a 1-D link-node model
- Simulate management alternatives:
  - 1. Restoration of the ship channel to original depth.
  - Elimination of oxygen-demanding substances (ODS) from the agricultural watershed.
  - 3. Elimination of ODS from wastewater effluent.
  - 4. Elimination of ODS from urban tributaries.



#### SJR-Link-Node Model Domain





## Model: Hydrodynamics

- Model calculates:
  - Velocity and flow @ Links
  - Water elevation and volume @ Nodes



#### Model: Water Quality

- Model calculates:
  - Water quality constituent concentrations based on mass balance with sources & sinks included
  - Sources & sinks for DO:



O2(s)=f(T)Aeration=a(O2(s)-O2) BOD+O2=CO2 NH3+O2=NO3 SOD+O2=CO2 Chla+N+P+CO2=Chla+O2 Chla+O2=Chla+CO2 VSS+O2=CO2+NH4

#### **Model Calibration**



#### Model Residuals by Year



#### Net Flow Rate in River





#### **Model Simulation Results**

#### **Restoration of channel depth**

Elimination of oxygen-demanding substances (ODS) from the agricultural watershed

Elimination of ODS from the wastewater treatment plant

Elimination of ODS from the urban tributaries

#### Impact of Wastewater Treatment Plant Upgrade on DO



<u>Before upgrade</u>: River DO =  $7.67 \pm 1.85$  mg/L DO (n=21,031), Violations 10.5% of time

<u>After upgrade</u>: River DO = 7.59 ± 1.54 mg/L (n=29,403), Violations 6.2% of time

## **Model Simulation Results**

|                                                                      |             | Model scenarios |              |             |             |
|----------------------------------------------------------------------|-------------|-----------------|--------------|-------------|-------------|
|                                                                      |             | Ship            | Agricultural | Treatment   | Urban       |
|                                                                      | Baseline    | Channel         | Watershed    | Plant       | Tributaries |
| DO (mg/L) when<br>violations<br>predicted by<br>baseline<br>(n=2007) | 5.43 ± 0.34 | 6.08 ± 0.53     | 5.85 ± 0.54  | 5.68 ± 0.49 | 5.53 ± 0.33 |
| Reduction in DO<br>violations<br>relative to<br>baseline             |             | 62%             | 52%          | 36%         | 12%         |
| Scenario<br>responsibility for<br>predicted<br>violations            |             | 38%             | 32%          | 22%         | 7%          |

## Conclusions

- Scenarios resulted in predicted <u>increased DO</u> and fewer violations
  - Restoration of ship channel had largest impact, followed by reduction of watershed ODS
  - Urban tributaries and wastewater had less effect
- Results assist policy decisions, support TMDL process, and engage stakeholders

## Acknowledgements

Ecosystem Restoration Program and its implementing agencies:

- California Department of Fish and Wildlife
- U.S. Fish and Wildlife Service
- **National Marine Fisheries Service**
- Project E0883006, ERP-08D-SO3



#### Mary Kay Camarillo, PhD, PE

Assistant Professor Civil Engineering Ecological Engineering Research Program University of the Pacific

(209) 946-3056 mcamarillo@pacific.edu

www.eerp.org

