

Trends and environmental implications of X₂ in Northern San Francisco Bay, 1988-2012

Ivy Huang, Stephen Monismith

Environmental Fluid Mechanics Laboratory Department of Civil and Environmental Engineering Stanford University

October 29, 2014

Special thanks to the **USGS**, **CDWR**, and **USBR** for collecting and making the data available for this analysis.

Background

Distance where bottom salinity is 2 psu.

Goal

Provide an updated analysis of how X_2 has evolved over the past 20+ years with in-situ measurements.

- USGS water quality transects (monthly CTD profiles, 1988 2014)
- USBR/CDWR salinity stations (hourly top & bottom, 1999 2012)
- DAYFLOW estimates freshwater outflow at Chipps Island (daily, 1988 2013)

Overview

- 1. What is the current relationship between X_2 and flow?
- 2. What are the implications of changing X₂ on the salinity field, total suspended solids, and chlorophyll *a* concentrations?

Global look at X₂

Where is X₂?

How does X₂ look in time?

What do we know?

Туре	Relationship	Source
Theory	$X_2 \propto Q^{-1/3}$	Hansen & Rattray (1965)
Unsteady (field)	$X_2(t) = 8 + 0.945X_2(t-1)$ - 1.5 log(Q (t))	Jassby et al. (1995)
Steady (field)	$X_2 = 167Q^{-0.141}$	Monismith et al. (2002)
Steady (model)	$X_2 = 210Q^{-0.182}$	Gross et al. (2010)
Direct computation	Compute surface salinity & assume $\Delta S = 0.64$ psu	USBR/CDWR
Unsteady	Based on Jassby's formulation	DAYFLOW

X₂ vs. flow

Battle of the exponents

X₂ & environmental variables

Closer look at Roe Island (USGS S6)

TSS vs. extinction coefficient

NSFB: Changes in time

Summary & moving forward

Links to TSS & Chl a ?

X_2 vs. Q

- Increase spatial & temporal coverage of bottom salinity
- Better estimates of Q
 & its uncertainty
- Stronger response between X₂ & TSS
- Relationship between k, TSS, and Chl a needs further exploration
- USBR/CDWR stations
 update

For more X₂ talks today...

11:40 AM (Rm 306)

A Reevaluation of the Relationships Between X₂, the Low Salinity Zone, and Fish Habitat Utilization by Michael MacWilliams

1:55 PM (Rm 314)

Salinity and Flow Variability in Suisun Bay during FLaSH by Liv Herdman