Low algal concentration narrows the salinity but not temperature tolerance of *Eurytemora* affinis

BG Hammock, S Lesmeister, I Flores, G Bradburd, F Hammock, & S Teh

Bay-Delta, Oct 28 2014

http://www.100thmeridian.org/

Ricciardi et al. 1998

- Resource limitation
- Niches, particularly related to metabolism
- Aquatic ecosystems: T and Sal
- Invasive species

http://www.okbassfednation.com/

Corbicula fluminea

Corbula amurensis

http://www.exoticsguide.org/corbula_amurensis

http://www.animalspot.net/corbicula-fluminea-asian-clam.html

C. amurensis =>[Chl-a] from 11 to 2 μg/L in Suisun Bay.

Cloern & Jassby, 2012

Consequences for salinity or thermal niche axes of SFE zooplankton?

Delta smelt eat zooplankton, and their abundance is declining

Declining upper salinity range of E.

Smelt gut contents by binned salinity (~1250 fish)

Gut content data courtesy of Steve Slater

Cell is isosmotic to solution & at homeostasis This is nice

Osmoregulators maintain homeostasis with enzymatic pumps, which require ATP

Hypothesis #1

- Low algal concentration narrows the salinity tolerance of *E. affinis*.
- Rationale: Deviations from isosmotic salinities increase metabolic demand (enzymatic ion pumps), but copepods cannot increase feeding if food is limited.

...be narrowing the salinity range of *E. affinis*...

...thereby contributing to food limitation of delta smelt >8 ppt

Comparing T to salinity

- Increases in temperature also increase metabolic demand
- Both will increase in the SFE with climate change (Cloern et al. 2011)
- However, unlike deviations from isosmotic salinity, increases in temperature allow ectotherms to move more rapidly.

Hypothesis #2

- Low algal concentration does not influence high temperature tolerance of *E. affinis*.
- Rationale: increased temperature allows copepods to increase feeding rate, allowing them to compensate for heightened metabolic demand by increasing consumption.

Range of salinities (0.1-28 ppt) at two algal concentrations (1× & 3.3 ×) and range of temps (4.1-35°C) at three algal concentrations (1×, 3.3× & 4.9×)

- 600 mL beakers
- 20 juveniles/beaker
- Moved to water bath

Aerated Fed daily 48 h water Δ

96 h counted live & dead

Hypothesis #3

• Low food concentrations prevent *E. affinis* from increasing feeding as salinity deviates from optimal, despite increased metabolic demand, reducing growth and/or survival.

Consumption

Growth

Conclusions

- Low food narrows salinity, but not temperature tolerance of *E. affinis*
- When food is limited and salinity is hyperosmotic, growth is sacrificed, likely in favor of osmoregulation
- When food is abundant, compensatory feeding makes copepod growth less sensitive to salinity stress
- No reason to believe this does not apply to other euryhaline ectotherms

We know that low food narrows the salinity tolerance of *E. affinis* in lab. Does it also narrow the salinity range of *E. affinis* in the SFE?

Thank you! Ching Teh

Lisa Liang

Diana Le

Gary Wu

Georgia Ramos

Chelsea Rochman Sai Krithika

Brittany Kammerer

Will Wetzel

Funding provided by the IEP & Aquatic Health Program, UC Davis

>1 yr of experiments hundreds of beakers

	Stressor	Lower LL ₅₀	95% CI	Upper LL ₅₀	95% CI
Te	emperature	<4.1	na	29.6	28.6, 30.6
Sa	alinity	0.3	0, 1.1	21.1	19.7, 22.5

E. affinis mortality

http://en.wikipedia.org/wiki/Killarney_National_Park Hladyz et al. 2011

http://www.arabpestcontrol.com Human and Gordon 1996 The distribution of *E. affinis* in salinity is much narrower than indicated by its broad salinity tolerance, suggesting a behavioral mechanism for its distribution.

(Journal of Plankton Research Kimmerer et al. 2014)

