Large-scale Genetic Tagging Experiment with Chinook salmon from the Feather River Hatchery Allows for Pedigreebased Inference

Anthony Clemento, Eric Anderson, John Carlos Garza

NOAA Fisheries & UCSC

North America Hatchery Releases (in Millions)

月,7

Hatcheries make and release millions of fish.

Q: Can we use genetics to identify population, age and cohort?

A: If we know an individual's parents, then we also know the exact age and source population of that fish.

Parentage-based tagging (PBT) uses genetic information from the parental breeding generation (broodstock) to "tag" the offspring

- Sample parents
- Breed as per usual
- Capture offspring as outmigrants, at sea, or upon return to spawn
- Genotype sample and locate parents in database

Central Valley Chinook salmon generally return to spawn at 2-4 years old.

PBT identifies offspring ages by finding their parents in the database.

Feather River Hatchery (FRH)

- One of the largest tributaries to the Sacramento River
- Construction of Oroville Dam and FRH in 1967
- Sampling
- Analysis

Feather River Hatchery spring-run PBT tag recoveries from fish returning to the hatchery (using *snppit*):

Hooray! Woot! Woot!

Feather River Hatchery spring-run PBT tag recoveries:

Feather River Hatchery spring-run PBT tag recoveries:

Feather River Hatchery spring-run PBT tag recoveries by cohort:

Tagging Results

- Recovered genetic tags from 4956 adult spawners
- Recovered 71% of recorded mate pairs (2006-2009)
- When accounting for samples that did not yield genotypes, natural origin broodstock and broodstock from other hatchery programs, proportion of adults with genetic tags recovered near 100% of expected proportions.
- Contrast with CWT ocean recoveries: only 85% of FRH spring yield correct tags.

	Offspring recoveries [and number analyzed] in year:										
SpawnYear	Sampled	Removed	Parent Pairs in Db.	2008 [3981]	2009 [1458]	2010 [1877]	2011 [1674]	2012 [1286]	2013 [1314]	Total	
2006	1148	126	0.753	3	541	17	0	0	0	561	
2007	1423	130	0.829	-	56	1272	213	0	0	1541	
2008	4717	736	0.711	-	-	26	572	22	0	620	
2009	1494	36	0.970	-	-	-	36	1106	68	1210	
2010	2059	182	0.896	-	-	-	-	4	1020	1024	
2011	1843	169	0.967	-	-	-	-	-	0	0	
2012	1299	13	0.980	-	-	-	-	-	-	0	
2013	1394	80	0.905	-	-	-	-	-	-	0	
sum	15377	1472	sum:	3	597	1315	821	1132	1088	4956	
			scaled:	4	786	1594	1099	1176	1208	5866	

Age Distribution

Pedigrees chart the familial relationships among individuals. We found 829.

Difference between 'by blood' or 'by marriage'.

Reproductive Success

Parental relatedness and number of offspring

Number of returning offspring

Heritability of physical traits: Length

Heritability of length-at-age for male and female offspring

Heritability of physical traits: Length

Heritability of length-at-age for male and female offspring

Heritability of physical traits: Age-at-maturity.

All Offspring		Kid Age			Males	Males Kid Age				Females		Kid Age		
Pa Age	Ma Age	2	3	4	Pa Age	Ma Age	2	3	4	Pa Age	Ma Age	2	3	4
2	3	0.069	0.931	0.000	2	3	0.121	0.879	0.000	2	3	0.017	0.983	0.000
3	3	0.012	0.971	0.017	3	3	0.020	0.964	0.016	3	3	0.003	0.978	0.019
3	4	0.035	0.914	0.051	3	4	0.063	0.902	0.036	3	4	0.000	0.930	0.070
4	3	0.016	0.945	0.039	4	3	0.017	0.966	0.017	4	3	0.014	0.928	0.058
4	4	0.035	0.860	0.105	4	4	0.063	0.875	0.063	4	4	0.000	0.842	0.158

Conclusions

- PBT performs extremely well as an efficient and effective tagging strategy
- Pedigrees allow for important biological inference and insight into the potential effects of various hatchery practices
- In the future, how can we use this type of information to adaptively manage hatchery populations?
- Large pedigrees may be useful for mapping the genes associated with observed phenotypes.

Acknowledgements:

- Thanks to the molecular ecology team and the SWFSC Santa Cruz Lab
- Anna Kastner, A.J. Dill and the staff at the Feather River River Hatchery
- Lea Koerber, Rob Titus, and the staff at the CDFW Tissue Archive
- Bureau of Reclamation and Deaprtment of Water Resources
- Partial funding from CEQI and CALFED

Contact: anthony.clemento@noaa.gov

